Human upright posture control models based on multisensory inputs; in fast and slow dynamics

نویسندگان

  • Ryosuke Chiba
  • Kaoru Takakusaki
  • Jun Ota
  • Arito Yozu
  • Nobuhiko Haga
چکیده

Posture control to maintain an upright stance is one of the most important and basic requirements in the daily life of humans. The sensory inputs involved in posture control include visual and vestibular inputs, as well as proprioceptive and tactile somatosensory inputs. These multisensory inputs are integrated to represent the body state (body schema); this is then utilized in the brain to generate the motion. Changes in the multisensory inputs result in postural alterations (fast dynamics), as well as long-term alterations in multisensory integration and posture control itself (slow dynamics). In this review, we discuss the fast and slow dynamics, with a focus on multisensory integration including an introduction of our study to investigate "internal force control" with multisensory integration-evoked posture alteration. We found that the study of the slow dynamics is lagging compared to that of fast dynamics, such that our understanding of long-term alterations is insufficient to reveal the underlying mechanisms and to propose suitable models. Additional studies investigating slow dynamics are required to expand our knowledge of this area, which would support the physical training and rehabilitation of elderly and impaired persons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow changing postural cues cancel visual field dependence on self-tilt detection.

Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants h...

متن کامل

A link-segment model of upright human posture for analysis of head-trunk coordination.

Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat mo...

متن کامل

Receding Horizon Based Control of Disturbed Upright Balance with Consideration of Foot Tilting(RESEARCH NOTE)

In some situations, when an external disturbance occurs, humans can rock stably backward and forward by lifting the toe or the heel to keep the upright balance without stepping. Many control schemes have been proposed for standing balance control under external disturbances without stepping. But, in most of them researchers have only considered a flat foot phase. In this paper a framework is pr...

متن کامل

Learning to Maintain Upright Posture: What can be Learned Using Adaptive Neural Network Models?

Human upright posture is an unstable position: Continuous activation of postural muscles is required to avoid falling down. This is the output of a complex control system that monitors a very large number of inputs, related to the orientation of the body segments, to produce an adequate output as muscle activation. Complexity arises because of the very large number of correlated inputs and outp...

متن کامل

Sampling Based Model Predictive Control with Application to Autonomous Vehicle Guidance

Model Predictive Control (MPC) was originally developed for relatively slow processes in the petroleum and chemical industries and is well known to have difficulties in computing control inputs in real time for processes with fast dynamics. In this paper a novel method called Sampling Based Model Predictive Control (SBMPC) is proposed as a resolution complete MPC algorithm to generate control i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience Research

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2016